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Two matrix manipulations encountered in molecular calculations are 

and 

Here A,, and Bpurs are integrals for the same expansion set, A,, being a general 
one-electron integral and B,,,, a two-electron integral. The length of the expansion 
set is n. The expansion coefficients W,, define symmetry or molecular orbitals. The 
above equations define the one-electron transformation and the two-electron 
transformation, respectively. At first glance the one-electron transformation 
appears to be proportional to n”, i.e., for each of the n2 matrix elements, n2 

operations are required. Similarly, the two-electron transformation appears to be 
proportional to n8. The two-electron case constitutes one of the few remaining 
time consuming segments in ub in&u molecular calculations. The effect of this 
bottleneck can be minimized by transforming only unique integrals, by using the 
method of partial sums, and finally by taking advantage of the structure of the 
coefficient matrix. When these techniques are used, the one-electron transformation 
in the worst case is proportional to n3. A reduction from n8 to n5 is realized for the 
two-electron transformation. One slight problem remains, redundant expansion 
integrals are required. The purpose of this note is to introduce a method which 
eliminates the redundancy problem. An algorithm is given which requires unique 
expansion integrals sequentially. 

* Work performed under the auspices of the U. S. Atomic Energy Commission. 
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Inspection of Eq. (1) leads one to the realization that 

Oij = 0j.i , 
provided 

Am = 4, . 

(3) 

(4) 

For energy calculations involving the Born-Oppenheimer Hamiltonian this is true 
and only one-half the n2 transformed integrals are unique. An even greater reduction 
is realized in the two-electron case, since 

(5) 

The symmetry of the transformed integrals is identical and approximately n4/8 
integrals are unique. 

The method of partial sums2 can be used to further reduce the computational 
effort. For the one electron case, the matrix 

0 = WfAW (6) 

is calculated in two steps: 

and 

C=AW, (‘h = i KnAzw (7) 
&T=l 

0 = w+c, (0)ij = i W&j . (8) 
q=l 

Although a storage area is required for the partial sum matrix C calculation of 0 
is proportional to rz3 rather than n 4. For the two-electron case the n-dependence is 
reduced from n8 to ns. This is accomplished in the following manner; a first partial 
sum is calculated for fixed p, q, r and all I: 

D(pqrP) = i WZ,B,,,~ . 
5=1 

1 Many of the ideas were. reviewed for the author by Prof. E. R. Davidson. 
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A second partial sum is accumulated for fixed p and q and all k and I: 

E(pq/kl) = i W,c,D(pqrlO. 
7=1 

(10) 

The third partial sum is accumulated for fixed p and all j, k and I: 

FMiW = i WApqlW 
g=l 

(11) 

Finally the integral matrix T is accumulated for all i, j, k and 1 (subject to the 
symmetry conditions mentioned above) 

Tijkt = f Wi,F(p/jkl). 
p=1 

(12) 

For ijkl, T(ijkI) = 0 

Forjkl, F(p/jkl)=O 

ForI,D(pqr/I)=O 

S4OOP 

v 

For kl, E(pq/kl)=E(pqikl) -2W kr WIT/ 1) 

For jkl, F(p/jkl) = F(p/jkl) - XWjq E(pq/kl) 

For ijkl, T(ijkl) = T(ijkl) - XWip FCp/jkl) 

FIG. 1. Loop structure of partial sums method for the two-electron transformation. 
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Calculation of each partial sum is proportional to n5, hence the complete process is 
proportiona to n5. The aIgorithm is one of the many [l-3] which is proportional 
to n5, it is particularly useful when the number of transformed orbitals is consid- 
erably less than the number of expansion functions. For this case the computational 
effort is proportional to mn4, where m is the number of transformed orbitals, The 
loop structure of the algorithm is given schematically in Fig. 1. 

Use of the uniqueness and the method of partial sums has resulted in great 
reductions of computational effort. It would seem the limit has been attained, but 
further reductions can be realized. Clearly any reduction in n, the number of 
expansion functions, will yield great savings. To a lesser degree the reduction of m, 
the number of transformed orbitals, can also be helpful. The latter is generally 
recognized as a theoretical problem and will not be considered here. The final 
reduction is realized not as a direct reduction of the number of expansion functions, 
but as a reduction by partitioning of the expansion set. Partitioning is possible 
when the coefficient matrix contains disjoint subsets. For atoms, s-functions and 
p-functions can be partitioned since the transformed orbitals contain no common 
expansion functions. Transformation to symmetry orbitals is another example, 
functions are partitioned into subsets which contain common (and no external) 
expansion functions. For the one-electron case 

Oa” c W Aa”W a by 

two types of one-electron transformations are possible 

(13) 

t: a = b, 

S: a f 6. 
(14) 

Here a and b denote subsets. The two-electron case 

Tabcd = Wn+Wb+WcdWewd , (15) 

yields six transformations 

ttt: a=b=c=d, 

tts: a = b, c=d, aft, 
tss : a=b, cfd, 
sts: afb, c=d, 
sst: a # b, c # d but a = c and b = d, 
sss: afbfcfd. 

(16) 

Although more programming effort is required for transformation by blocks, the 
savings are enormous. Rather than the n5 proportionality a k5 dependence is 
realized, k being the largest number of functions in a subset. 
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The one shortcoming of the methods mentioned is ail require random access of 
the expansion integrals. This is extremely troublesome in the two-electron case 
where the basic two-electron integrals cannot be contained in fast computer 
storage. We have developed an algorithm which does not require these integrals 
randomly. In fact, if properly ordered the integrals can be used sequentially. For 
the one-electron case, the symmetrix matrix A (= A”“) is rewritten as 

where 
A = A, + A,+, (17) 

&)ij = ‘%j/(l + SiJ i>j 
(18) 

= 0 i<j. 

The one-electron transformation is, therefore, 

0 = W+AW 

= WfA,W + W+A,+W 

= W-tP + P’W, 
(19 

where 

P = A,W; P,i = i WdA,),, = i’ Wi,&,/U + S,,). 
9=1 q=1 

Notice the elements A, are required sequentially. The general formula for the one 
electron transformation is 

where 

0:; = f i (1 + %z,S,q>-1 A,,Wi,Wi, + S,,Wj,Wiq), 
p=1q=1 

r = n,;a # b 

=p;a = b. 

Using the same technique, the general formula for the two-electron transformation 
is rewritten as 
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the limits being 

*=n,; a#b 

= Pi a = b, 

** =n,; aft 

= Pi a = c and b = d, 

*t* = nd ; c # di if a = c and b = c/, the sum will also terminate when 
= r; c = d) p = r and q = s. 

Notice the integral B,,,, is required only once. The explicit formulas for the method 
of partial sums are given in the Appendix2. 

The effect of one of the few remaining bottlenecks in molecular quantum 
mechanical calculations, integral transformation, has been reduced by orders of 
magnitude. The new algorithm presented is particularly useful since basic integrals 
are required sequentially. Efficient methods [4] have been developed for obtaining 
the desired order, so it would seem the limit has been reached. A shortcoming of 
the method should be mentioned, the algorithm requires random access of the 
partial sums, hence at least D, E and F(see Appendix) must remain in fast computer 
memory. 

APPENDIX 

The new algorithm requires different partial sum formulas. For the six block 
types, the formulas are 

2 Subroutines for each type are available on request. 
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E(pqlk4 = &M4 + i”: WkTD(pqr/l) + WdQqrlk), 
9-l 

FWW = FWM + 2 K&(pqlW, q=1 

tss : 

E(pqlkl) = E(pqlk4 + 2 Wk,D(Pqd), 
T=l 

F(q/jkl) = F(qljk0 + i W&(pqlkO, 
q=1 

TFGd = TEzd + 5 Wi,F(p/jkl) + Wi,F(p/ikl); 
p-1 

tts: - 

E(pq/kO = E(pqlk0 + W,,D(pqrll) + Wt,D(pqrlk), 

Tzt = T$$F + 2 Wi,F(p/jkl) + Wj,F(p]ikl); 
'p=l 
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sst: - 
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RpW) = Fh4jW + z W&(pq/kl), 
Cl=1 

T&p = T%? + 2 Wt,F(p/jkl) + W,,F(p/lQ), 
9=1 

* = n, until p = r and q = s; 

EWW = HpqlW + i Wk,D(pqrll) + Wt,D(pqrlk), 
r=1 

F(plkjl) = FWjkO + i W,,E(pq/kl), 
cl=1 

T;g” zz K%? + c W,FW,ikO + K.FWW + WkpF(plW 
+ W,,WW 

* = r until p = r and q = s. 

ACKNOWLEDGMENT 

I thank A. D. McLean for an illuminating discussion on the ALCHEMY transformation 
programs. Comments by the Referee indicating the restriction of the method are also 
acknowledged. 

REFERENCES 

1. R. K. NESBET, Rev. Mod. Phys. 35 (1963), 552. 
2. K. C. TANG AND C. EDMISTON, J. Chem. Phys. 52 (1970), 997. 
3. A. D. MCLEAN, “Proceedings of the Conference on Potential Energy Surfaces in Chemistry,” 

Univ. of California, Santa Cruz, CA, Aug. 10-13, 1970, IBM Corp. Technical Rept. RA-18, 
San Jose, CA. 

4. M. YOSHIMINE, Technical Rept. RJ-555 (1969), International Business Machines Corp., 


